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Abstract  —  An advanced control operation center to enable 

corrective, preventive and predictive maintenance, while also 
ensuring optimal photovoltaic (PV) plant performance was 
developed in this work. The developed software solution hosts 

innovative algorithms able to ensure data quality, while also 
allowing early failure and performance loss diagnosis without 
disrupting the normal operation of the PV plant. It is primarily 

based on real-time analysis of measurement data, machine 
learning and statistical analysis. The solution was validated 
experimentally against field measurements from an operating PV 

power plant of 1.8 MWp installed in Greece. The results showed 
technical availability and energy yield improvements of the test PV 
plant by handling intelligently the detected faults through the 

smart ticketing system. Optimal maintenance planning (e.g., 
optimum hardware replacement/maintenance, cleaning schedules, 
etc.) can thus lead to a reduction of operation and maintenance 

(O&M) costs and hence directly impacting positively the levelised 
cost of electricity (LCOE). 
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I. INTRODUCTION 

The growing concerns about rising greenhouse gas emissions 

(GHG) affecting detrimentally the global climate, advocate the 

need for de-carbonization of the energy sector by reducing the 

GHG emissions, phasing out fossil fuels and accelerating the 

shift towards renewable technologies [1]. In fact, the future 

energy mix is expected to be heavily dependent on renewables, 

particularly solar photovoltaics (PV), which is set to become 

the “King of Renewables” [1]. For countries with high solar 

resource (such as Cyprus, Greece and Spain), PV is expected to 

play a central part in the future energy mix.  

A vital factor that will enable the further growth of the PV 

technology is the reduction of PV electricity costs by increasing 

lifetime output, improving the operational efficiency and 

optimizing system operations [2]. This can be achieved by 

safeguarding the service lifetime performance through PV 

monitoring, supervision, maintenance and control of installed 

systems, hence directly impacting positively the investment 

cost, levelised cost of electricity (LCOE), and in general PV 

competitiveness [2].  

To tackle the major challenges in increasing PV system 

performance (as it was recently reported that PV assets continue 

to underperform by up to 8%, thus highlighting the need for 

high-fidelity data and greater model transparency [3]) and 

technological competitiveness, machine learning algorithms 

and statistical techniques can be developed to enable corrective, 

preventive and predictive maintenance strategies [4]. The 

operation and maintenance (O&M) activities consist of two 

parts: (i) the operations that include remote monitoring, 

supervision, forecasting, communication and control of the PV 

power plant and (ii) the maintenance that includes the activities 

related to the health-state and optimum performance of PV 

plants. Therefore, ensuring cost-effective and online PV 

monitoring with automated data-driven operation 

functionalities is important for improving the LCOE through: 

(i) increased availability by the on-time triggering of 

losses/faults (hence increasing the energy yield) and (ii) 

reduced O&M costs by optimizing hardware 

replacement/maintenance, thus reducing the reaction and 

resolution times and hence the manual labor.  

In this domain, the key battlegrounds of technical solutions 

that support high system performance are associated with the 

capabilities of operation centers that automatically analyze 

incoming data, provide real-time observability of PV assets, 

enable failure and health diagnostics, and handle intelligently 

the detected faults/errors through a smart ticketing system [5]. 

The scope of this paper is to address the fundamental challenge 

of automated PV plant operational-state management by 

developing an autonomous control operation center (i.e., an 

online software platform, powered by artificial intelligence 

algorithms and statistical analysis methods). The proposed 

software solution was validated using historical field data from 

a large-scale PV power plant installed in Greece. The results 

showed improvements in the availability and energy yield of 

the PV plant under study. This was achieved by utilizing the 

smart ticketing system, that provided the necessary information 

and steps to fix problems quickly and efficiently. 



 

II. METHODOLOGY 

A. Experimental setup - Benchmarking  

The developed software platform was benchmarked 

experimentally using historical field measurements from an 

operating PV power plant of 1.8 MWp installed in Larissa, 

Greece. It comprises of 7824 poly-crystalline-Silicon (poly c-

Si) PV modules, each of nominal power of 230 Wp. The PV 

modules are south oriented, 25° tilted and connected in series 

to form 326 strings at the inputs of 4 grid-connected inverters 

(81 or 82 strings connected to the four inverters).  

The performance of the PV system and the prevailing 

meteorological conditions are recorded according to the 

requirements set by the IEC 61724-1 [6]. The recorded data are 

stored using a measurement monitoring platform, that 

comprises of solar irradiance, wind, temperature and electrical 

operation sensors and stores data at a resolution of 1 second and 

accumulation steps of 15-minute averages. The meteorological 

measurements include the in-plane irradiance (GI) measured 

with a pyranometer, ambient temperature (Tamb), wind speed 

(Ws) and direction (Wa). The PV system’s operational 

measurements include the module back-surface temperature 

(Tmod), inverter temperature (Tinv), string DC current (IDC), array 

DC current (IA), voltage (VA) and power (PA) and AC output 

power (Pout). Additional yields and performance metrics such 

as the performance ratio (PR) and the temperature-corrected PR 

(PRTC) were also calculated [7]. 

In this work, field data over different time periods were used. 

Over these time periods, different types of faults (e.g., 

communication errors, inverter shutdowns, low plant 

production and PR, equipment malfunctions, etc.) occurred 

during the operation of the system, which were resolved by 

technicians. Information about the outage’s periods, fault types, 

O&M events/actions and technicians’ feedback were kept in a 

maintenance log. 

B. Autonomous control operation center 

The autonomous control operation center integrates 

monitoring, supervision, maintenance, and fault diagnostic 

algorithms along with a smart ticketing system. The software 

platform leverages artificial intelligence algorithms and 

statistical analysis methods for the quality in operations and 

decision making. It is based on a modularized architecture to 

decouple the whole system and allows modules to interoperate 

autonomously. The architecture consists of four layers/modules 

as depicted in Fig. 1. 

The control operation center continuously analyzes the 

incoming electrical and weather data for anomalies and outliers 

(Module 1). The data are initially pre-processed by the data 

quality assessment (DQA) stage to identify and treat invalid 

values, thus preparing the data for further performance analysis 

[7]. Subsequently, the data are aggregated into 

daily/monthly/yearly blocks. Then, machine learning and 

statistical algorithms are applied on the cleansed data to 

diagnose (detect and classify) the failure/performance loss and 

its type, triggering alarms in case of fault occurrences (Module 

2) [8]. Afterwards, the smart ticketing system prioritizes the 

detected faults (based on the calculated energy and cost 

impact), derives an optimal maintenance planning, and suggests 

ways for resolving the detected incidents (Module 3). Finally, 

the detailed fault description, the criticality of the incidents and 

the list of suggestions for O&M field actions are visualized 

through the software platform (Module 4) and forwarded to the 

technicians. 

 
Fig. 1. Module architecture of the control operation center. 

C. Data quality assessment 

DQA algorithms are initially applied to the available 

measurements to ensure high-fidelity time series data for 

further analysis. The DQA stage is used to detect/treat invalid 

measurements, which may indicate equipment malfunctions, 

sensors and/or PV faulty operation, thus reducing uncertainty 

and increasing confidence in energy estimates. The DQA 

process includes multiple algorithms for data consistency 

examination, data filtering and imputation/inference, outlier 

removal, etc. More details are provided by Livera et al. in [7]. 

The DQA stage also provides information about the technical 

availability (or uptime), energy-based availability  along with 

insights about possible data errors, technical (performance) 

issues and fault root causes [9]. 

D. Fault diagnostics and alarms 

Data-driven fault diagnostic algorithms (e.g., outlier 

detection, machine learning and comparative techniques) and 

open-source libraries (e.g., RdTools [10]) are applied to detect 

underperformance incidents (e.g., failures and performance 

losses), that cause power losses [4], [11]. Faults that can be 

detected by the fault diagnostic engine include inverter 

malfunctions, string disconnections, partial shading, soiling, 

performance degradation, etc. [4], [12]. Apart from the 

detection part, the diagnostic algorithms are also capable of 

categorizing the detected fault incidents into different root 

causes [8], providing also the energy loss breakdown list [4]. In 

case of underperformance incidents, alarms are generated by 

the fault diagnostic engine. These alarms are used along with 

the alarm signals generated by the inverter to determine the 

fault root cause [4]. The results of the fault diagnostic 



 

algorithms and the generated alarms are then forwarded to the 

ticketing system.  

In this work, emphasis is given on the diagnosis of soiling, 

which was recently characterized as a multibillion-dollar issue 

in operating PV power plants [13]. Soiling losses caused at least 

a 3% to 4% loss to global annual PV energy production in 2018, 

accounting for €3-5 billion lost revenue [13]. And this is 

expected to further increase in the upcoming years due to the 

expanding number of deployed PV systems in regions highly 

prone to soiling. 

E. Smart ticketing system 

The smart ticketing system uses as inputs the detected data 

quality issues, underperformance incidents and the alarm 

signals to generate recommendations for field maintenance 

actions (to be performed by the technicians). The detected faults 

and errors are prioritized (i.e., incidents of low criticality 

indicated by green color, incidents of medium criticality 

indicated by yellow color and incidents of high criticality 

indicated by red color),  based on the calculated energy and cost 

impact [4], deriving an optimal maintenance schedule in an 

attempt to optimize the O&M activities and reduce the 

associated costs.  

The smart ticketing system finally alerts the technicians 

about the fault/loss root cause, while also providing a list of 

recommendations for field actions (accessible through the 

software platform) to resolve the problem [4], [5]. 

F. Visualization of autonomous operation center results 

through the software platform 

ACTIS ERP is the user interface of the autonomous control 

operation center [14]. The ACTIS ERP is a comprehensive 

asset management solution, that integrates centralized real-time 

monitoring with alerting and ticketing, O&M activities, asset 

and project management in a single software platform. The 

software platform can be accessed remotely from any device, 

anytime and anywhere via internet. 

It displays current and historical performance data, key 

performance indicators (KPIs) of PV assets and portfolios, 

financial and operational indications, alarms, detected 

incidents, breakdown list of energy losses, O&M events, and a 

list of recommendations for field actions. The health-state of 

PV components and the generated tickets are also displayed. 

G. Economic impact of proposed O&M actions  

To evaluate the economic impact of O&M actions, economic 

models based on metrics such as the LCOE and the Net Present 

Value (NPV) were used. The LCOE reflects the project’s 

economic feasibility, while NPV evaluates the profitability of 

an investment (i.e., compares the revenues and costs over the 

project lifetime) [15], [16].  

These economic metrics also allow the identification of the 

best time to conduct an artificial cleaning in a PV system (i.e., 

when the financial loss due to soiling surpasses the cleaning 

cost), thus optimizing the cleaning schedules by considering 

factors like the cleaning cost, the soiling rate, and the PV plant 

size [15].  

The impact of the soiling on the LCOE and on the O&M costs 

was recently analyzed in [17]. Soiling and snow-related losses 

were found to be the second most severe fault category, 

accounting for approximately 25% of total lost energy. The 

study also showed that additional cleanings could reduce losses 

by up to 11%, but the economic viability depended on the 

cleaning costs and electricity prices.  

Another recent study [18] demonstrated that actual PV 

cleaning can lead to an increase in the energy yield, having a 

positive impact on LCOE and NPV. Comparing the actual 

cleaning date with the optimal cleaning date, it was found that 

the actual cleaning was performed with a 7-day delay, resulting 

in lower improvement in NPV and LCOE. 

III. RESULTS 

A. Data quality assessment 

DQA algorithms were initially applied to field measurements 

of the test PV plant. The data cleansing algorithms were used 

to restrict measurements within predefined physical limits [7] 

and to identify/treat invalid measurements. Over the period 

from January to December 2022, the DQA detected 5.28% 

invalid data points (e.g., erroneous and missing values). The 

application of DQA algorithms for inspecting and treating 

missing and erroneous data improved the PV plant availability. 

The technical availability of the plant was then calculated 

(see Fig. 2). Over the yearly evaluation period, the uptime was 

higher than 98.30%. The whole plant (or part of it) was down 

for approximately 250 hours due to communication loss with 

the PV plant/inverters, grid problems and/or grid outage.  

 
Fig. 2. PV plant availability over the period from January to 
December 2022. 

B. Fault diagnostics and alarms 

Over a 1-year period (January - December 2022), the test PV 

system produced 2,659 MWh. The fault diagnostic algorithms 

detected several fault incidents (e.g., plant was down, inverter 

shutdown failures, string problems, soiling, etc.), accounting 

for 24.38 MWh (0.92%) of lost energy. For the detected fault 

incidents, alarms were triggered by the engine and by the 

inverter itself (i.e., failed and warnings that appeared in the 

supervisory control and data acquisition system). The alarms 

were used to determine the fault root cause (e.g., inverter 

failures, string disconnections, soiling, shading, vegetation, 

etc.).  



 

The classification of failures resulted to increased PV plant 

availability and optimized hardware replacement/maintenance. 

The classification of the detected O&M incidents, 23 

associated with corrective maintenance (i.e., faulty material, 

loose connections, malfunction of equipment, extreme weather 

conditions, defective PV modules, soiling, correction and 

maintenance works, grid problems/failure, grid undervoltage, 

inverter fault, ground fault, etc.) and 6 associated with 

preventative maintenance (e.g., vegetation), is shown in Fig. 3. 

Most of the detected incidents were due to PV plant related 

failures (41.38%). Other root causes included vegetation, 

monitoring system errors, power plant uninterruptible power 

supply (UPS) system problems, soiling, communication and 

electrical errors.   

 
Fig. 3. Classification of detected O&M incidents for the test PV 
plant over the period from January to December 2022.  

 

The RdTools python library [10] was then used to evaluate 

the PV production and to calculate rates of performance 

degradation and soiling loss. The Year-on-Year (YoY) method 

was used to estimate the performance loss rate (PLR), while the 

Stochastic Rate and Recovery (SRR) [19] method was used to 

identify soiling losses and cleaning events. The cleaning events 

were detected by observing positive shifts in the DC 

performance profile and using linear regression analysis to fit 

dry periods of at least 14 days. The SRR model generated 

potential soiling profiles through Monte Carlo simulation, and 

the median value of each day was extracted as the soiling profile 

per inverter.  

Snow losses were also detected by analyzing PV 

performance parameters along with weather data. 

For a reliable short-term performance evaluation, at least a 5-

year time series data should be available to yield credible results 

[20]. To this end, field measurements over the period from 

February 2013 to January 2019 were used. 

Over the investigated period (February 2013 to January 

2019), an annual PLR of -0.90%/year was obtained. In parallel, 

the SRR model detected 34 cleaning events with the inverters 

experiencing low/limited soiling losses, with average(s) soiling 

rates of -0.26%/day to -0.0009%/day for the investigated period 

(see Fig. 4).  

According to the maintenance log records, it was found that 

the O&M company regularly cleaned the PV modules twice a 

year. This practice can account for the significantly lower level 

of soiling losses observed, in contrast to the higher values 

commonly reported in the literature, which indicated soiling 

rate values up to -3%/day [21]. 

 
Fig. 4. Soiling losses experienced by inverters 1 and 2 of the test 
PV plant over the period from February 2013 to 2019.  
 

C. Smart ticketing system and software visualization platform 

The smart ticketing system processed the detected fault 

incidents and alarm signals to: (i) recommend specific field 

operations (e.g., corrective actions) to be performed by the 

technicians and (ii) provide insights and information regarding 

the fault root cause to the technicians to resolve the problem. It 

is worth noting here that the list of O&M recommendations is 

automatically generated. The field actions were also prioritized 

and scheduled based on the incident’s severity (i.e., impact of 

the incidents on energy and cost) and finally forwarded to the 

responsible technicians. Eventually, the technicians executed 

the recommended field actions to improve operations (i.e., 

saving time, reducing O&M costs, and improving PV output 

production). The technicians were obliged to reach the PV plant 

within 4 daytime hours and 24 hours from the time of detecting 

the problem for medium and high criticality incidents, 

respectively.  

An example of detected incidents and taken O&M actions is 

provided in Fig. 5 along with additional details (i.e., fault 



 

description, severity of incident, date of occurrence, details of 

the dispatching technician to the field and action taken).  

 The results showed improvements in the availability and 

energy yield of the test PV plant by handling intelligently the 

detected faults through the smart ticketing system. Due to the 

smart management of incidents and optimal maintenance 

planning, only 0.92% (instead of 12.4% as simulated by Python 

Photovoltaic Reliability Performance Model [22]) of the 

produced energy was lost over the yearly period for the test PV 

system, while the plant’s downtimes were minimized. 

It is worth noting here that for longer evaluation periods (i.e., 

more than 1 year), the benefits would be greater (e.g., increased 

energy yield by ~6%, less downtime and reduced O&M costs 

by up to 10%) [5], [23].   

D. Impact of cleaning optimization on economic metrics  

In lack of information on the maximum extent of soiling (i.e., 

the losses in conditions of no mitigation), a cleaning 

optimization methodology was conducted on the available time 

series data to evaluate the impact of cleanings using two 

economic metrics (i.e., LCOE and NPV).  

The results showed that after the first two cleanings, the 

inverters experienced low/limited soiling losses, with averages 

of 0.9% to 1.4% for the period between February 2013 to 

January 2019. This means that, for the given site, each cleaning 

can cost in between 0.6 and 1.3 €/kW, making regular soiling 

mitigation not profitable for this plant [5].  

The actual cleaning activities could not only increase the 

energy output but also had a positive effect on LCOE and NPV, 

thereby reducing the cost of energy production from the PV 

system and increasing profits [18]. 

When considering LCOE, the optimization of cleaning is 

heavily influenced by the installation, and O&M costs. On the 

other hand, while the installation and O&M costs do impact 

profits, the NPV is not affected by them. Instead, the NPV is 

influenced by factors such as the cleaning cost, electricity 

prices, energy generation, degradation rates, and the recovery 

of losses through cleaning. 

IV. SUMMARY OF THE WORK 

A software platform was designed to optimise the O&M 

strategies and automate operations of PV systems. The 

proposed solution is predominantly progressing further the field 

of PV operational data quality, online fault diagnosis and 

automatic field operations. This is achieved through the 

development of an autonomous control operation center, that 

analyses the measurements collected from the constant 

monitoring of PV plants. The control operation center 

integrates monitoring, supervision, maintenance, and online 

fault diagnostic algorithms along with a smart ticketing system. 

The incorporated algorithms allow the early identification and 

classification of failures (through the fault detection engine) 

and ensure quality in operations and decision making (through 

the smart ticketing system). The smart ticketing system 

considers the alarms and the severity of the incident for 

maintenance planning and provides the necessary information 

and steps to fix problems quickly and efficiently. As such, 

improvements in the PV plant availability, energy yield, O&M 

costs and hence, LCOE are achieved. 

To conclude, the development and operation of an 

autonomous control operation center helps to improve the PV 

plant availability, the intervention, response and resolution 

times. Therefore, O&M actions are taken effectively and timely 

by the corresponding asset owners or operators/contractors, 

thus safeguarding the PV performance and minimizing the 

investment risks, the associated costs and hence the LCOE. 

ACKNOWLEDGMENT 

This work was funded by the ROM-PV project 

(P2P/SOLAR/0818/0009). Project ROM-PV is supported 

under the umbrella of SOLAR-ERA.NET Cofund 2 by the 

General Secretariat for Research and Technology, the Ministry 

of Economy, Industry and Competitiveness-State Research 

Agency (MINECO-AEI) and the Research and Innovation 

Foundation (RIF) of Cyprus. SOLAR-ERA.NET is supported 

by the European Commission within the EU Framework 

Programme for Research and Innovation HORIZON 2020 

(Cofund 2 ERA-NET Action, No. 786483).  

Alectris IKE Hellas is kindly acknowledged for providing the 

field data of the test PV plant. 

REFERENCES 

[1] “International Energy Agency (IEA), Renewables 2021: 
Analysis and forecast to 2026,” 2021. 

[2] A. Livera, M. Theristis, G. Makrides, and G. E. Georghiou, 
“Recent advances in failure diagnosis techniques based on 
performance data analysis for grid-connected photovoltaic 
systems,” Renew. Energy, vol. 133, pp. 126–143, 2019, doi: 

 

Fig. 5. Screenshot depicting some of the detected O&M incidents for the test PV plant, their status, severity and action taken to resolve the incident. 

 



 

10.1016/j.renene.2018.09.101. 
[3] kWh analytics, “Solar Generation Index 2022,” 2022. 
[4] A. Livera, G. Tziolis, F. Jose G., and G. Ruben Gonzalez, 

Bernal George E., “Cloud-based platform for photovoltaic 
assets diagnosis and maintenance,” Energies, vol. 15, no. 20, 
p. 7760, 2022, doi: https://doi.org/10.3390/en15207760. 

[5] A. Livera, M. Theristis, L. Micheli, E. F. Fernández, J. S. 
Stein, and G. E. Georghiou, “Operation and maintenance 
decision support system for photovoltaic systems,” IEEE 
Access, vol. 10, pp. 42481–42496, 2022, doi: 
10.1109/ACCESS.2022.3168140. 

[6] International Electrotechnical Commission (IEC), 
“Photovoltaic system performance - Part 1: Monitoring, IEC 
61724-1:2017,” 2017. 

[7] A. Livera et al., “Data processing and quality verification for 
improved photovoltaic performance and reliability analytics,” 
Prog. Photovoltaics Res. Appl., vol. 29, pp. 143– 158, 2021, 
doi: 10.1002/pip.3349. 

[8] A. Livera, M. Theristis, L. Micheli, J. S. Stein, and G. E. 
Georghiou, “Failure diagnosis and trend-based performance 
losses routines for the detection and classification of incidents 
in large-scale photovoltaic systems,” Prog. Photovoltaics 
Res. Appl., vol. 30, no. 8, pp. 921–937, 2022, doi: 
10.1002/pip.3578. 

[9] A. Livera, M. Theristis, E. Koumpli, G. Makrides, J. S. Stein, 
and G. E. Georghiou, “Guidelines for ensuring data quality 
for photovoltaic system performance assessment and 
monitoring,” in 37th European Photovoltaic Solar Energy 
Conference (EU PVSEC), 2020, pp. 1352–1356, doi: 
10.4229/EUPVSEC20202020-5DO.2.4. 

[10] M. G. Deceglie, D. Jordan, A. Shinn, and C. Deline, 
“RdTools : An Open Source Python Library for PV 
Degradation Analysis degradation rate,” pp. 1–15, 2018. 

[11] A. Livera, G. Paphitis, M. Theristis, J. Lopez-Lorente, G. 
Makrides, and E. George, “Photovoltaic system health-state 
architecture for data-driven failure detection,” Solar, vol. 2, 
no. 1, pp. 81–89, 2022, doi: 
https://doi.org/10.3390/solar2010006. 

[12] J. Lopez-lorente et al., “Characterizing soiling losses for 
photovoltaic systems in dry climates : A case study in 
Cyprus,” Sol. Energy, vol. 255, no. March, pp. 243–256, 
2023, doi: 10.1016/j.solener.2023.03.034. 

[13] C. Schill et al., “Soiling Losses – Impact on the Performance 
of Photovoltaic Power Plants, Report IEA-PVPS T13-

21:2022,” 2022. 
[14] Alectris, “ACTIS ERP - The ERP Platform for Renewables.” 

[Online]. Available: https://actiserp.com/. [Accessed: 20-
Dec-2022]. 

[15] L. Micheli et al., “Improved PV Soiling Extraction through 
the Detection of Cleanings and Change Points,” IEEE J. 
Photovoltaics, vol. 11, no. 2, pp. 519–526, 2021, doi: 
10.1109/JPHOTOV.2020.3043104. 

[16] M. Theristis, A. Livera, C. B. Jones, G. Makrides, G. E. 
Georghiou, and J. S. Stein, “Nonlinear Photovoltaic 
Degradation Rates: Modeling and Comparison Against 
Conventional Methods,” IEEE J. Photovoltaics, vol. 10, no. 
4, pp. 1112–1118, 2020, doi: 
10.1109/JPHOTOV.2020.2992432. 

[17] L. Micheli, E. F. Fernández, Á. Fernández-Solas, J. G. Bessa, 
and F. Almonacid, “Analysis and mitigation of nonuniform 
soiling distribution on utility-scale photovoltaic systems,” 
Prog. Photovoltaics Res. Appl., vol. 30, no. 3, pp. 211–228, 
2022, doi: 10.1002/pip.3477. 

[18] L. Micheli, E. F. Fernández, J. T. Aguilera, and F. Almonacid, 
“Economics of seasonal photovoltaic soiling and cleaning 
optimization scenarios,” Energy, vol. 215, 2021, doi: 
10.1016/j.energy.2020.119018. 

[19] M. G. Deceglie, L. Micheli, and M. Muller, “Quantifying 
Soiling Loss Directly from PV Yield,” IEEE J. Photovoltaics, 
vol. 8, no. 2, pp. 547–551, 2018, doi: 
10.1109/JPHOTOV.2017.2784682. 

[20] I. Romero-Fiances et al., “Impact of duration and missing 
data on the long-term photovoltaic degradation rate 
estimation,” Renew. Energy, vol. 181, pp. 738–748, 2022, 
doi: https://doi.org/10.1016/j.renene.2021.09.078. 

[21] K. Ilse et al., “Techno-Economic Assessment of Soiling 
Losses and Mitigation Strategies for Solar Power 
Generation,” Joule, vol. 3, no. 10, pp. 2303–2321, 2019, doi: 
10.1016/j.joule.2019.08.019. 

[22] “PV-Reliability Performance Model – System Advisor 
Model.” [Online]. Available: https://sam.nrel.gov/pvrpm. 

[23] A. Livera, M. Theristis, A. Charalambous, J. S. Stein, and G. 
E. Georghiou, “Decision support system for corrective 
maintenance in large-scale photovoltaic systems,” in 48th 
IEEE Photovoltaic Specialist Conference (PVSC), 2021, pp. 
0306–0311, doi: 10.1109/PVSC43889.2021.9518796. 

 

 

 

 

 


