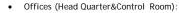
O&M REDEFINED. OUTPERFORMING EXPECTATIONS.[™]

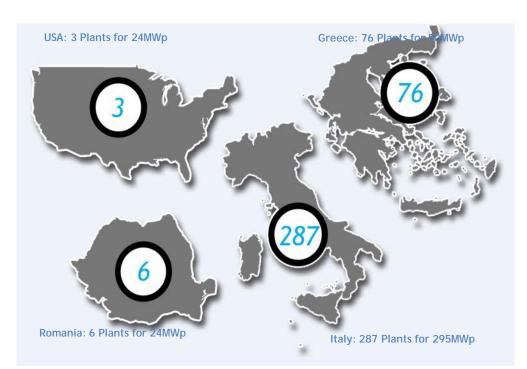

Improving Solar Plant Performance

Practical solutions for reducing OPEX costs in operational PV

A successful case of plants' turnaround

Who we are

Greece:


- Industrial Area of Thessaloniki 57022 Sindos
- o 24G Papadiamantopoulou Str, 11528 Athens
- Resources:
 - 7 direct employees (Engineers)
 - 3 external
- Subcontractors
- Office:
 - o 1200 Brickell Avenue Suite 1800 Miami, FL 33131
- Resources:
 - o 2 direct employees (Engineers)
 - o Subcontractors

USA

- Via Spinabella 7, 00047 Marino (RM)
- Resources:
 - 4 direct employees (Engineers)
 - 3 external 0
 - Subcontractors

Overview

Overview of the presentation:

- i. Classification of Solar PV Plants
- ii. Methodology
- iii. Case Study

1

- i. Good or Adequately Performing
- ii. Clearly Distressed
- iii. <u>Apparently</u> Good Performing

Good Performing Plants:

Good Performing Plants are the ones that perform according to or above the Owners' expectations. Such expected energy output is calculated on the basis of average scenarios and by no means does it provide the maximum achievable performance.

Improvement through:

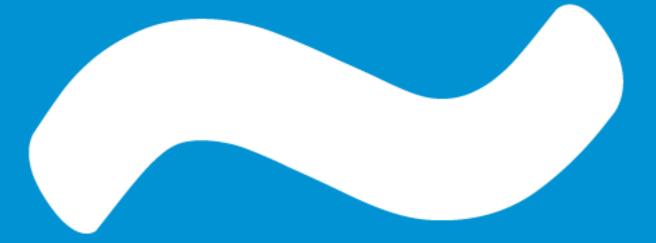
- ✓ More efficient response and shorter resolution times
- Predictive maintenance
- ✓ Cure of systemic faults
- Technical improvements also in case of faults due to external factors (e.g. grid fluctuations)

Clearly Distressed Plants:

Clearly Distressed Plants perform below the Owners' expectations and in some cases may lead to a default if such underperformance is not remedied. Such situations are encountered in cases where serious faults exist in engineering, construction and maintenance, especially in markets that have imploded.

Improvement through:

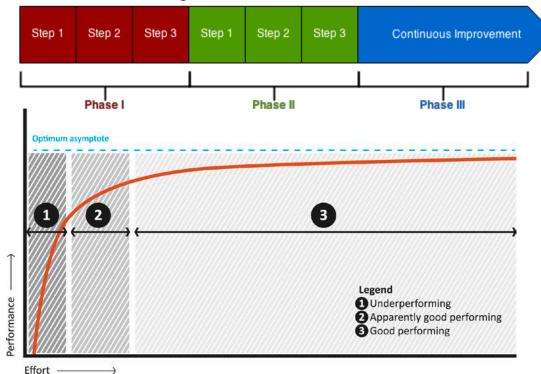
- Immediate identification and cure of acute problems
- ✓ First priority is Availability. Performance comes next.
- As soon as plants are stabilized, step-by-step approach in necessary, similar to Good Performing Plants


Apparently Good Performing Plants:

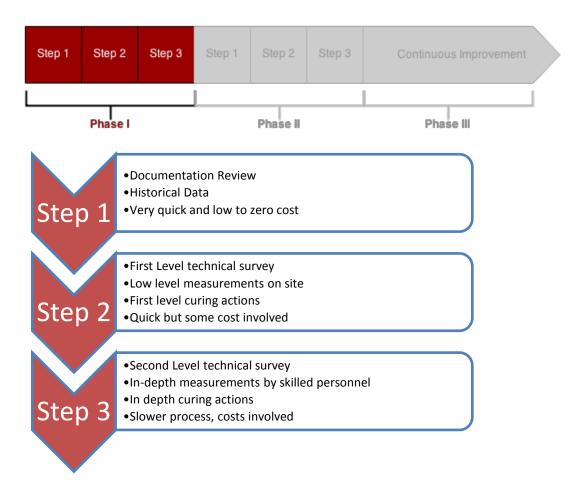
Apparently Good Performing Plants are Plants that <u>seem</u> to be operating in a satisfactory manner, but only because performance measurements are false or falsified. The underperformance is not so severe to create cash flow problems, but the room for improvement is not evident from the current measurements.

Improvement through:

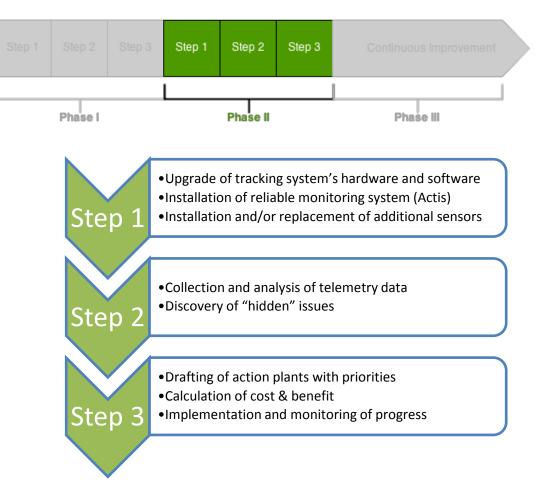
- Installation of a reliable monitoring system to understand actual status
- Further troubleshooting similar to Good Performing or Clearly Distressed category


METHODOLOGY

Methodology


Improvement Effort Chart

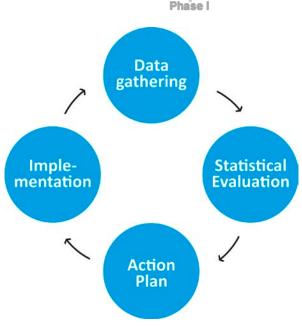
The closer to the optimum, the more effort is required to increase further performance and/or sustain it at high levels.


Methodology

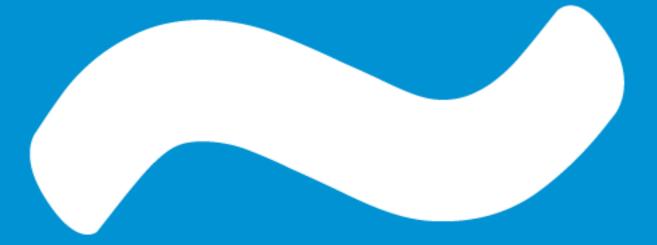
First Phase – Clearly Underperforming

Methodology

Second Phase – Apparently Good Performing



Methodology


Third Phase – Continuous Improvement

- Medium to long term process
- Gathering information and data from DAS (Data Acquisition System) but also day-to-day activities and observations
- Statistical evaluation of data (usually on yearly basis)
- Action plan and prioritization based on impact of (set of) failures

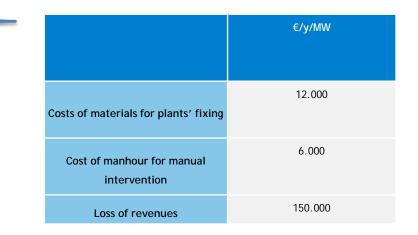
CASE STUDY

NLECTRIS

Case Study

Plant Identity

Size: Location: Type: Inverters: Panels: 7X1 MWp Puglia and Marche, Italy Double axis trackers Kaco, Ingeteam Sunpower, Suntech, CEEG



Case Study

The Challenges – Severe underperformance and Safety

- Trackers' control and management system written in proprietary language;
- Trackers' movement inefficiently organized and performed;
- Trackers' control and management system highly sensitive to even short time power outage;
- Wind alarm reposition of the tracker sails not secured and incorrectly set up → major issues regarding safety and security repositioning;
- Mechanical parts of the tracker engines not correctly maintained and with clear damages;
- No monitoring capabilities included in the initial design of the tracker control system.

- High costs of continuous interventions
- Severe underperformance (up to 25% below base case scenario)
- Average yearly loss of revenues of 150.000€/MW

Case Study

Process

Step 2

Phase I

Phase II

Step 1

Phase III

- Broken mechanical components (cradles, gears, engines, encoders)
- Disabled strings
- Communication issues between junction boxes and central cabinets
- Insufficient grounding
- Critical events for inverters which limit/stop their production (e.g. insulation errors)

- Immediate replacement of defective mechanical components
- Immediate replacement of defective string cables
- Immediate replacement of defective communication cables
- Fixing of insulation faults

Availability of 98% reached

Case Study

- Usage of a proprietary communication protocol →bottleneck for maintenance, potential upgrades, parts replacements;
- Usage of a rabbit microprocessor working with a dedicated board (ETH01)→not a commercial one;
- Difficult and prolonged procedure for control box (re)startup;
- Low memory of the rabbit microprocessor;
- Unreliable calculation of trackers positions, pre-calculated, and embedded into the rabbit and not adjustable.

- Installation of a master PLC for monitoring and remote control of trackers;
- Upgrade of the field PLCs installed in the JBs with a new firmware;
- Installation of two anemometers, connected to the master PLC;
- Implementation of Modbus protocol for the communication between JBs PLC and master PLC;
- Installation of specialized inverters for the trackers engine → read total operation time of each engine and _ create alarms of overcurrent.

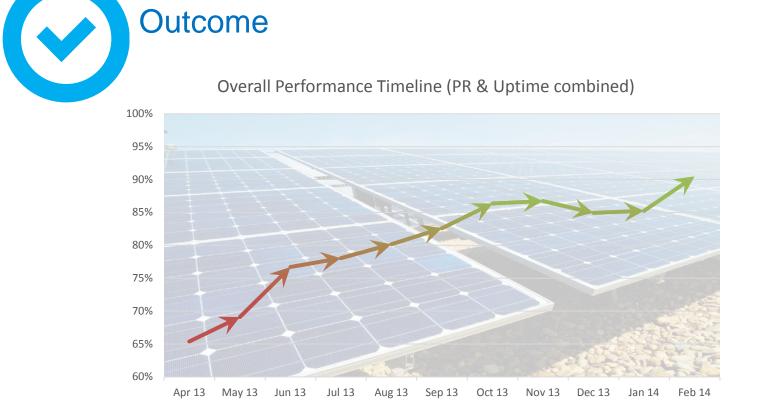
PR of >82% reached

Case Study

- Tracker Field PLCs To IP/WEB Backbor T_4 Interface A 01 T 7 T_8 A_02 Ethernet To Plant PLC MODBUS GP (Phoenix) MODBUS A T_1 // T_2 // T_3 // T_4 // T_5 A_na MODBUS B т 6 T_7 T_8 // T_9 // T_10 MODBUS C Field PLCs Master PLC Backbone T_2 T_4 T_3 B 01 T_8 T_9 Analog Input Digital Input B_02 T_1 // T_2 // T_3 // T_4 // T_5 B_nb Wind meter * T_6 // T_7 // T_8 // T_9 // T_10 Field PLCs Backbone C T_1 // T_2 // T_3 // T_4 // T_5 Wind meter N C_01 T_7 // T_8 // T_9 // T_10 T_6 C_02 ENEL alarm Grass cutting mod T_1 T_2 // T_3 // T_4 // T_5 C_nc T_6 T_7 T_8 T_9 Panels washing mode
- Actis installation
- Discovered hidden problems with preventative maintenance interventions (ie trackers greasing)
- Dramatic decrease of intervention times
- Identification of tendencies of failures before they actually occur

Case Study

Already planned:


• Further optimization of the backtracking capabilities of the installed firmware

Further actions:

- Statistical analysis of repetitive failures and targeted interventions
- Predictive maintenance

Case Study

Outcome

- Yield increase: + 27% \rightarrow 33% reachable with new backtracking capabilities ۲
- Optimized returns: payback time of 2 months
- Further plans (implementation of the further actions) : +3-7% PR

Case Study

"Investors need O&M suppliers who care about their solar power plants as if they were their own. Alectris has demonstrated that level of care and ability to deliver sophisticated O&M services for the solar investor»

Guy Vanderhaegen - Managing Director - Origis Energy.

Thank You!

For further info, please visit alectris.com

Cyprus 155 Spyrou Kyprianou Avenue Ersi Court, Office 201, 3083 Limassol

Greece Industrial Area of Thessaloniki 57022 Sindos **Italy** Piazzale Cadorna 10 20121 Milano USA 1200 Brickell Avenue Suite 1800 Miami, FL 33131